
Before (on page 6), we presented the High Quality data for the years 1910 to 2008 for Mildura, Sydney and Boulia (BOM, 2009 c) as ‘scatter plots’ with the data points displayed on a scale of 0 to 35°C. In the graphs below the same datasets are presented as ‘column graphs’ with the annual temperature values being expressed as anomalies from their 30-year average (1961-1990). The data hasn’t changed, only the way of presenting it; making it easier to compare variability and trends and, if required, to combine data sets to obtain regional average data. For those of you who are mathematically inclined, the linear equations ($y = mx + c$) for the lines of best fit and the correlation coefficients (r) are given to enable you to more precisely compare trends (see Appendix 5 in the separate Appendices document).

ACTIVITY: Comparing trends in temperature anomaly time series
Examine carefully the six graphs below and answer the question that follows.

1(a). Mildura minimum anomalies
1(b). Mildura maximum anomalies
2(a). Sydney minimum anomalies
2(b). Sydney maximum anomalies
3(a). Boulia minimum anomalies
3(b). Boulia maximum anomalies

QUESTION:
1. Which of the six time-series above shows the strongest upwards trend in temperatures?